30 research outputs found

    Development of Active Learning Data Fixing Tool with Visual Analytics to Enhance Traffic Near-miss Diagnosis

    Get PDF
    This study proposes a software to upgrade the UCF SST\u27s Automated Roadway Conflicts Identification System (ARCIS), a pixel-to-pixel manner automated safety diagnostics and conflict identification system. The system is developed to extract vehicles\u27 trajectories and traffic parameters using unmanned aerial vehicles (UAV) video and utilizing deep learning techniques. A user-friendly tool to improve rapid system development with active-learning, data analysis, and visualization techniques is introduced, which is capable of traffic safety near-miss diagnostics based on the ARCIS output. Multiple approaches are used to enhance the system performance, including video stabilization, object filtering, stitching multiple videos, vehicle detection and tracing. In addition, the active learning technique based on Stream-Based Selective Sampling strategy is adopted for a human-in-the loop label correction that is developed in order to reduce the labeling time and cost. The system outputs 3D maps of vehicle speed, count and surrogate safety measures, which provide insights for traffic safety diagnosis. Ultimately, these functionalities were integrated into a comprehensive system for traffic safety applications. Previous studies only investigated methods for enhancing road traffic safety and traffic network data analysis; this study builds upon the literature but improves upon it with an efficient video processing methodology, a higher quality and accuracy result on traffic trajectory data, and the ability to visualize the data in various formats for traffic analysis

    Effects of brain–Computer interface combined with mindfulness therapy on rehabilitation of hemiplegic patients with stroke: a randomized controlled trial

    Get PDF
    AimTo explore the effects of brain–computer interface training combined with mindfulness therapy on Hemiplegic Patients with Stroke.BackgroundThe prevention and treatment of stroke still faces great challenges. Maximizing the improvement of patients’ ability to perform activities of daily living, limb motor function, and reducing anxiety, depression, and other social and psychological problems to improve patients’ overall quality of life is the focus and difficulty of clinical rehabilitation work.MethodsPatients were recruited from December 2021 to November 2022, and assigned to either the intervention or control group following a simple randomization procedure (computer-generated random numbers). Both groups received conventional rehabilitation treatment, while patients in the intervention group additionally received brain–computer interface training and mindfulness therapy. The continuous treatment duration was 5 days per week for 8 weeks. Limb motor function, activities of daily living, mindfulness attention awareness level, sleep quality, and quality of life of the patients were measured (in T0, T1, and T2). Generalized estimated equation (GEE) were used to evaluate the effects. The trial was registered with the Chinese Clinical Trial Registry (ChiCTR2300070382).ResultsA total of 128 participants were randomized and 64 each were assigned to the intervention and control groups (of these, eight patients were lost to follow-up). At 6 months, compared with the control group, intervention group showed statistically significant improvements in limb motor function, mindful attention awareness, activities of daily living, sleep quality, and quality of life.ConclusionBrain–computer interface combined with mindfulness therapy training can improve limb motor function, activities of daily living, mindful attention awareness, sleep quality, and quality of life in hemiplegic patients with stroke.ImpactThis study provides valuable insights into post-stroke care. It may help improve the effect of rehabilitation nursing to improve the comprehensive ability and quality of life of patients after stroke.Clinical review registrationhttps://www.chictr.org.cn/, identifier ChiCTR2300070382

    Nickel hydroxide-supported ru single atoms and Pd nanoclusters for enhanced electrocatalytic hydrogen evolution and ethanol oxidation

    Get PDF
    The rational fabrication of Pt-free catalysts for driving the development of practical applications in alkaline water electrolysis and fuel cells is promising but challenging. Herein, a promising approach is outlined for the rational design of multimetallic catalysts comprising multiple active sites including Pd nanoclusters and Ru single atoms anchored at the defective sites of Ni(OH)2 to simultaneously enhance hydrogen evolution reactions (HER) and ethanol oxidation reactions (EOR). Remarkably, Pd12Ru3/Ni(OH)2/C exhibits a remarkably reduced HER overpotential (16.1 mV@10 mA cm−2 with a Tafel slope of 21.8 mV dec−1) as compared to commercial 20 wt.% Pt/C (26.0 mV@10 mA cm−2, 32.5 mV dec−1). More importantly, Pd12Ru3/Ni(OH)2/C possesses a self-optimized overpotential to 12.5 mV@10 mA cm−2 after 20 000 cycles stability test while a significantly decreased performance for commercial 20wt.% Pt/C (64.5 mV@10 mA cm−2 after 5000 cycles). The mass activity of Pd12Ru3/Ni(OH)2/C for the EOR is up to 3.724 A mgPdRu−1, ≈20 times higher than that of commercial Pd/C. Electrochemical in situ Fourier transform infrared measurements confirm the enhanced CO2 selectivity of Pd12Ru3/Ni(OH)2/C while synergistic and electronic effects of adjacent Ru, Pd, and OHad adsorption on Ni(OH)2 at low potential play a key role during EOR

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Numerical Study of Effects of Winds and Tides on Monthly-Mean Circulation and Hydrography over the Southwestern Scotian Shelf

    No full text
    A nested-grid modelling system is used to quantify effects of winds and tides on the three-dimensional (3D) circulation and hydrography over the southwestern Scotian Shelf (swScS) and surrounding areas in 2018. The performance of the nested-grid modelling system is assessed by comparing model results with observations and reanalysis data. Analysis of model results demonstrates that both winds and tides enhance the vertical mixing and modify the 3D circulation over the swScS. In winter (summer), the wind-induced vertical mixing warms (significantly cools) the sea surface temperature (SST) over the Scotian Shelf (ScS). In addition to intense vertical mixing associated with winter convection, the wind-induced mixing raises the sea surface salinity (SSS) by entraining the relatively salty sub-surface waters with the surface waters. The effect of wind-induced vertical mixing is evident in the upper water columns of ~40 m (~15 m) in February (August) 2018 over the swScS, reflecting the typically stronger wind forcing in winter than in summer. The wind forcing also enhances the seaward spreading of river runoff. Strong tidal mixing and advection also play an important role in affecting the hydrography and density-driven currents over the Bay of Fundy (BoF), Georges Bank (GeB), and swScS. In summer, tides significantly reduce the SST, increase the SSS, and affect large density-driven currents over the BoF, GeB, and swScS. Winds and tides also modify the large-scale ocean circulation, eddies, meanders, and frontal structures in the deep waters off the swScS through the modulation of baroclinic hydrodynamics

    Correlations between Garnet Species and Vibration Spectroscopy: Isomorphous Substitution Implications

    No full text
    Garnet has many species because of its common isomorphism. In this study, a suite of 25 natural gem-quality garnets, including pyrope, almandine, spessartine, grossular, and andradite, were examined by standard gemological testing, LA-ICP-MS, FTIR, and Raman analysis. Internal stretching and bending vibrations of the SiO4-tetrahedra of garnet exhibit correlate with the type of cations in garnet’s dodecahedral position (A site) and octahedral position (B site). FTIR and Raman spectra showed that with the increase of the radius of Mg2+, Fe2+, Mn2+, and Ca2+ in A site, or the unit cell volumes of pyrope, almandine, spessartine, and grossular, the spectral peaks of Si–Ostr and Si–Obend modes shift to low wavenumber. Because of the largest cations both in A site (Ca2+) and in B site (Fe3+), andradite exhibited the lowest wavenumber of Si–Ostr and Si–Obend modes of the five garnet species. Therefore, garnet has correlations between chemical composition and vibration spectroscopy, and Raman or IR spectroscopy can be used to precisely identify garnet species

    LZTS1 promotes proliferation and suppresses apoptosis by inhibiting the activation of AKT/GSK-3 signaling pathway in pancreatic cancer cells

    Get PDF
    Purpose: Pancreatic cancer is a kind of harmful human cancer, rated as the seventh leading cause of global death. Research has shown that in various cancers, the expression of Leucine zipper tumor suppressor 1 (LZTS1) has been found low, but its effects on pancreatic cancer is yet to be elucidated. In this research, the aim was to investigate the biological functions of LZTS1 and the underlying molecular mechanism in pancreatic cancer. Methods: GEPIA database was reported for the relative expression of LZTS1 in pancreatic cancer tissues and cell lines compared to normal ones. Kaplan-Meier analysis was done on GEPIA based on the previous data. Gene expression analysis was performed on human pancreatic cancer cell lines (BXPC3, CFPC-1, Panc-1, AsPC-1 and L3.6pl) as well as a normal cell line HEK-293T by employing RT-qPCR. Transfection procedure was done to up- or down-regulate the expressions of LZTS1 in Panc1 cell line. CCK-8 assay and flow cytometric method were adopted to determine cell viability and apoptosis, respectively. Protein expression levels were determined by Western blot. Results: Expressions of LZTS1 were high in both tumor tissues and cells. Patients with higher LZTS1 had lower 5-year overall survival rate compared to those with lower LZTS1. Overexpressed LZTS1 promoted proliferation and inhibited apoptosis in cancer cell lines. A significant promotion of phosphorylated level of AKT and GSK-3 proteins were achieved through the overexpression of LZTS1. Conclusion: The results from this study revealed that overexpression of LZTS1 increased cell viability and inhibited cell apoptosis, by activation of AKT/GSK-3 signaling pathway. Our findings indicated that LZTS1 might be a prognostic biomarker in pancreatic cancer

    Diagnostic Value of Chromosomal Microarray Analysis for Fetal Congenital Heart Defects with Different Cardiac Phenotypes and Extracardiac Abnormalities

    No full text
    (1) Background: The objective of this study was to investigate the diagnostic value of chromosomal microarray analysis (CMA) for congenital heart defects (CHDs) with different cardiac phenotypes and extracardiac abnormalities (ECAs) and to explore the pathogenic genetic factors of CHDs. (2) Methods: We collected fetuses diagnosed with CHDs by echocardiography at our hospital from January 2012 to December 2021. We analyzed the CMA results of 427 fetuses with CHDs. We then categorized the CHD into different groups according to two dimensions: different cardiac phenotypes and whether it was combined with ECAs. The correlation between the numerical chromosomal abnormalities (NCAs) and copy number variations (CNVs) with CHDs was analyzed. Statistical analyses, including Chi-square tests and t-tests, were performed on the data using IBM SPSS and GraphPad Prism. (3) Results: In general, CHDs with ECAs increased the detection rate for CA, especially the conotruncal defects. CHD combined with the thoracic and abdominal walls and skeletal, thymic and multiple ECAs, were more likely to exhibit CA. Among the CHD phenotypes, VSD and AVSD were associated with NCA, while DORV may be associated with NCA. The cardiac phenotypes associated with pCNVs were IAA (type A and B), RAA, TAPVC, CoA and TOF. In addition, IAA, B, RAA, PS, CoA and TOF were also associated with 22q11.2DS. The length distribution of the CNV was not significantly different between each CHD phenotype. We detected twelve CNV syndromes, of which six syndromes may be related to CHDs. The pregnancy outcome in this study suggests that termination of pregnancy with fetal VSD and vascular abnormality is more dependent on genetic diagnosis, whereas the outcome in other phenotypes of CHDs may be associated with other additional factors. (4) Conclusions: CMA examination for CHDs is still necessary. We should identify the existence of fetal ECAs and specific cardiac phenotypes, which are helpful for genetic counseling and prenatal diagnosis

    An updated phylogenetic and biogeographic analysis based on genome skimming data reveals convergent evolution of shrubby habit in Clematis in the Pliocene and Pleistocene

    No full text
    Convergent evolution, often viewed as the inevitable outcome of natural selection, has received special attention since the time of Darwin. Clematis is well known for its climbing habit, but it has some shrubby species, known as sect. Fruticella s.l. The shrubby Clematis species are distributed in the dry habitats of Central Asia and adjacent areas showing possible convergent evolution. In this study, we assembled the complete plastome and nuclear ribosomal DNA (nrDNA) sequences of 56 Clematis species, representing most sections and covering most of the shrubby species, to reconstruct their evolutionary histories. Using both maximum likelihood and Bayesian methods, the plastome and nrDNA datasets generated similar, but not identical, phylogenetic relationships, which are better resolved than in previous studies. Then, molecular dating, historical range reconstruction, and character optimization analyses were conducted based on this updated phylogenetic framework. All the morphological characters widely used for taxonomy were shown to have evolved multiple times. Molecular dating inferred that Clematis diverged from its sister in the mid Miocene, and all six major clades of Clematis originated during the late Miocene, with a species radiation during the Pliocene to Pleistocene. The results clearly showed that the shrubby habit evolved independently in four lineages of Clematis in Asia. We also revealed that the shrubby lineages have emerged since the very beginning of Pliocene. Asian monsoon variation in the Pliocene and glacial period fluctuation in the Pleistocene may be the driving forces for the origin and diversification of the shrubby Clematis in Central Asia and adjacent dry areas
    corecore